Potential, technology and challenges in rice residues based energy conversion in residues

INTERNATIONAL WORKSHOP ON THE INNOVATIVE USES OF RICE STRAW AND RICE HUSK
11-13, December 2012

Session 2: Renewable energy and carbon sequestration based on rice residues

Sunil Dhingra, Senior Fellow and Advisor
Biomass Energy Technology Applications
TERI, New Delhi
In this Presentation

1. Overview of bio-energy resources in India
2. Rice Production in India
3. Potential of biomass energy in India
4. Potential for rice straw into liquid biofuels
5. Utilization of rice residues
6. Energy conversion technological options
7. TERI’s initiatives- biomass energy technology conversions
8. In sum
Overview of bio-energy in India

- Large biomass resource base
 - Biomass production – 840 million tons
 (Firewood 220 million tons)
 (Agro residues 620 million tons)
- Modern biomass energy technologies focus
 - Gaseous fuels (producer gas, bio gas)
 - Electricity (small-scale using gasification, large-scale using steam route)
 - Liquid fuels
 - First Generation (non-edible plants seeds, bio-ethanol)
 - Second Generation (ligno-cellulosic biomass - rice straw, bagasse, wheat straw, sorghum etc..)
India is second largest producer of rice in the world after China

- Rice Production - about 104.32 million tonnes in 2011-2012 crop year
- Rice residues
 - Rice straw – 148 million tonnes
 - Rice husk – 45 million tonnes
- Second largest source of biomass from agricultural residues
Rice Belt – Low per capita electricity & Most backward region, energy poverty
Utilizations of Rice Husk/Straw

- As organic fertiliser, animal fodder, animal bedding

- **Cogeneration in Rice mills**

- **Briquetting**

 - raw material for paper board making,

- **Boiler and gasifiers fuels**
Feedstock Availability for Ethanol Production in India

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Annual Production (MMT)</th>
<th>Annual Availability (MMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice straw</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>9.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Sugarcane tops</td>
<td>79.4</td>
<td>97.8</td>
</tr>
<tr>
<td>Sugarcane bagasse</td>
<td>6.4</td>
<td>101.3</td>
</tr>
<tr>
<td>Cotton stalks</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Sorghum bagasse</td>
<td>15.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Corn stover</td>
<td>23</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Ref: NIIST – TIFAC Survey
Energy conversion technology options

- **Combustion** – Most common on wide scale with low capital investment (Mainly suitable for large scale), rice straw in co-fired mode
- **Gasification** – Small scale for decentralized electricity generation, mainly through fixed bed gasifier, existing technology needs need further development for energy and environment performance, development of medium/large scale plant based LTFB technology
- **Fermentation** – co-digested rice straw with cow dung technology being developed for better performance.
- **Ethanol production**- **Pre-treatment, Separation and Purification** – Most complex and high capital expenditure, novel dehydration technologies are required – main challenge in commercialization of the process for ethanol production
Biomass based Electricity and Heat generation in India

- More than 2000 MW power is established from biomass resources
- About 800 MW projects are under implementation
- 100 MWe installed for thermal applications in industries
- Large number of agro-residues are used by briquetting industries
- Agricultural residues are utilizes for decentralized thermal use in industries like
 - Brick / lime / pottery kilns,
 - Industrial dryers,
 - Ovens, furnaces and boilers
Biomass Gasifier Based Mini Grids

- Biomass Gasifier based power plants that uses rice husks/agricultural residues
- Small capacity gasifier system with producer gas engine
- Micro-grid/Mini-grids to supply electricity
- Distribution network over an area of about 2 to 5 km
- Serves households and commercial users for 6-8 hours daily
Maximum Theoretical Ethanol Yield from Lignocellulosic feedstocks
TERI Initiatives
Biomass energy technology development

Gasification
- Two stage biomass gasifier for electricity generation, Irrigation applications
- Biomass based poly generation system (electricity + cooling)

Pyrolysis for bio-oil production in decentralised scale
- Development of auger based pyrolysis unit for wide variety of feedstalls including rice straw

Bio-ethanol and Bio-methanation
- Development of pretreatment technologies for rice straw conversion
- Developing rice straw + cow dung biogas production system

Knowledge exchange, technology transfer and market development
Improved two stage gasifier for rural India

Improved prototype developed at TERI Gram;

- Cold starting with thermal gasifier
- Without water simple dry type gas cooling cleaning system developed
- No waste water generation in cleaning and cooling system
- Auxiliary input: about 1.8 kWe (~9%)
Thermochemical Conversion: Pyrolysis

- Developed for large scale production of biofuels globally
- It involves thermal destructive distillation of biomass in the near absence of oxygen at a temperature of around 500°C.
- The products obtained from biomass pyrolysis primarily consist of non-condensable gasses, liquid bio oil (bio crude) and residual bio-char

Research at TERI
- Developed and demonstrated a 100Kg/day pyrolysis prototype for production of bio-oil
- Demonstration of Modular Pilot Pyrolysis Unit of capacity 20 kg/h (max) to Produce Bio Oil from Agro-Industrial Biomass Wastes and Methodology for Analysis, Use and Upgradation of Bio-oil
TERI Research on Lignocellulosic Ethanol

• Lab scale research on cellulosic ethanol – focused on pretreatment of lignocellulosic biomass
• Conducted research on Rice straw & Sweet sorghum bagasse as feedstocks
• Steam explosion and dilute acid hydrolysis studied as pretreatment options
TEAM Process

- Technologies being developed for using tree based organic substrates such as leaf litter, seed starch / cakes, vegetable waste, kitchen waste, etc.
- Biphasic process give higher methane yield with lower retention period
- Working on rice straw + cow dung co-digestion bio-gas model
Facilities Available at TERI

• TERI has developed its own experimental facility which is placed in TERI GRAM at Gual Pahari.

• The infrastructure includes well developed research facilities and prototype development workshop

• TERI has different capacities test beds gasification system, pyrolysis and bio-methanation.

• The comprehensive instrument list includes
 – On line gas analyzer, Gas Chromatograph, FTIR, Simultaneous thermal analyzer (STA), CHNO analyser, Total Organic Carbon analyzer, Flue gas analyzer, Spectrophotometer, Bomb calorimeter etc.

• COMSOL software for optimization of reactor design
Conclusions

- The rice husk is mainly consumed as raw material for competing industries like rice mills, industrial fuels, paper board making,
- Rice straw is used for fodder and significant amount is burnt in the field without being collected and less than 10% are available in surplus.
- Rice husk is largely utilized for energy production with low energy conversion through existing technologies
- Rice straw conversion for ethanol production, gasification (LTFB) is important for utilization.
- Rice residues can become potential source for bio-based economy beyond petroleum for meeting feed, material, industrial chemicals and energy source through integrated bio-refinery model
- Develop country specific database that will provide information on different rice residue production and their current utilization trends in competing sectors using GIS and RS techniques
- Develop methodology and decision support tools to analyze the different rice-residues potential and use in many competing sectors that can be generalized
- Promote regional and global cooperation in rice residues biofuels RTD among developing and developed Countries