Rice straw collection and storage

Samir Topno and Stephan Haefele

INTERNATIONAL WORKSHOP ON THE INNOVATIVE USE OF RICE STRAW AND RICE HUSK
11 December 2012, IRRI, Los Banos
Rice straw collection and storage: conceptual framework.

Rice Plant

- Rice grain
- Residues

Ecosystem services

- Socio-economics, sustainability, target systems

Rice straw collection and storage: conceptual framework.

Collection

- Husk
- Straw

Feasibility, LCA, Economics, Energy Balance

Other uses

Straw

Densification

Transport

Storage

Energy Production

Clean and economic energy

Utilization of ash
Issues around rice straw collection

• How: feasibility of straw collection, behind combine or from threshing heaps?
• Feasibility of collection from small fields?
• Collection after rains so that some of the K/Ca is already leached?
• Energy balance of collection and transport;
Issues around rice straw storage

- How can straw be stored in a tropical environment: outside, under cover, under roof?
- At the end of the wet season, the straw might be wet but storage conditions are drier (DS);
- At the end of the dry season the straw is dry but storage conditions are humid (WS);
- How does the straw quality change during storage?
- Energy balance of storage;
Baler as the tool for straw collection

- Baling to increase bulk density;
- To facilitate easy handling, transportation & storage;
- The straw bales produced are between 200 to 400 kg, 1 m in diameter, and 1.2 m long;
Indoor or outdoor storage in the wet season?

Experimentation started at the beginning of the 2012 wet season.

Overview of the treatments tested:

T1: Dry bales indoor storage
T2: Wet bales Indoor storage
T3: Dry bales outdoor storage
T4: Wet bales outdoor storage
T5: Dry bales plastic covered (semi-permeable)
T6: Wet bales plastic covered (semi-permeable)

The same setup is used in the next dry and wet season.
Parameters measured in the experiment:

Automatically measured characteristics in the bales:

- Temperature
- Volumetric water content
- Conductivity

Automatically measured climatic parameters:

- Solar radiation
- Relative humidity
- Rainfall

Manually measured parameters:

- Weight
- Sampling for chemical and calorimetric analysis
Some preliminary results

Dry Bales Indoor

- Temperature (°C)
- Weight (kg)

Wet Bales Indoor

- Temperature (°C)

Dry Bales Outdoor

- Temperature (°C)
- Weight (kg)
Moisture Content of Rice Straw Bales Sampling

Moisture Content (DBI)

Moisture Content (WBI)

Moisture Content (DBO)

Moisture Content (WBO)
Bale Opening at the End of the Season

<table>
<thead>
<tr>
<th></th>
<th>Depth 10 cm</th>
<th>Depth 20 cm</th>
<th>Depth 40 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBI 1</td>
<td>5.85</td>
<td>6.16</td>
<td>7.49</td>
</tr>
<tr>
<td>DBI 2</td>
<td>6.89</td>
<td>6.82</td>
<td>7.46</td>
</tr>
<tr>
<td>DBI 3</td>
<td>5.57</td>
<td>5.33</td>
<td>11.55</td>
</tr>
<tr>
<td>WBI 1</td>
<td>7.33</td>
<td>7.34</td>
<td>9.25</td>
</tr>
<tr>
<td>WBI 2</td>
<td>11.9</td>
<td>10.91</td>
<td>9.56</td>
</tr>
<tr>
<td>WBI 3</td>
<td>7.23</td>
<td>8.74</td>
<td>10.0</td>
</tr>
<tr>
<td>DBO 1</td>
<td>13.18</td>
<td>5.28</td>
<td>6.99</td>
</tr>
<tr>
<td>DBO 2</td>
<td>18.75</td>
<td>8.54</td>
<td>10.04</td>
</tr>
<tr>
<td>DBO 3</td>
<td>14.75</td>
<td>10.85</td>
<td>10.41</td>
</tr>
<tr>
<td>WBO 1</td>
<td>15.9</td>
<td>7.86</td>
<td>7.62</td>
</tr>
<tr>
<td>WBO 2</td>
<td>9</td>
<td>8.19</td>
<td>7.82</td>
</tr>
<tr>
<td>WBO 3</td>
<td>18.11</td>
<td>12.43</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Next Steps

• **Energetics**

Total Energy **Input** = HHB + HHL + HHUL +HHT+HHLU

Total energy **output** = High heating value of rice straw at the end of the storage

High heating value of diesel & engine oil = 38.9 MJ L⁻¹
Economics

\[
\text{Cost} = \sum \text{Machines} + \sum \text{Fuel} + \sum \text{Labour} + \sum \text{Maintenance} + \sum \text{Depreciation} + \sum \text{Insurance}
\]

Maintenance

\[
RM = (RF1)(P)(\frac{h}{1000})^{RF2}
\]

Where \(RM \) = accumulated repair and maintenance cost ($)

RF1 and RF2 are repair and maintenance factors

\(P \) = Machine list price in current dollars

\(h \) = accumulated hours of machine use

Depreciation

6% of the original value over 15 years lifetime

10% salvage value at the end 15 years
CO₂ Estimation
HH value of diesel=38.9 MJ L⁻¹
1 liter diesel burnt=2.45 kg of CO₂ emission

Estimation of CO, NOₓ and SO₂,
\[E_i = P \times OpHrs \times LF \times EF_i \]

Where:
- \(E_i \) = Emission of substance \(i \) for a specific engine type (kg y⁻¹)
- \(P \) = Average rated engine power (kW)
- \(OpHrs \) = Vehicle operating hours (h y⁻¹)
- \(LF \) = Load factor utilized in facility operations for equipment type
- \(EF_i \) = Emission factor of substance \(i \), for given engine and fuel type (kg kWh⁻¹)
- \(i \) = Substance \(i \)

\[E_i = Ly \times EF_i \] (Road trans. Vehicle)

Where:
- \(E_i \) = Emission of substance \(i \) for a specific engine type (kg y⁻¹)
- \(Ly \) = Distance travelled in reporting year (km y⁻¹)
- \(EF_i \) = Emission factor of substance \(i \), for given engine and fuel type (kg km⁻¹)
- \(i \) = Substance \(i \)
Conclusion

• Outdoor and Indoor storage of rice straw bales showed slow drying in the wet season.
• Overall elements concentration in the bales, stored indoor and outdoor did not change significantly.
• Elemental concentration in different depths (10, 20, and 40 cm) of the rice straw bales were not significant.
• Rice Straw can be stored indoor and outdoor for energy production.